Sceptyczny wobec AI jak data scientist. Wyniki badań socjologicznych polskiego środowiska programujących tak zwaną sztuczną inteligencję i sugestie dla nauczycieli akademickich
Streszczenie w języku polskim
Wprowadzenie: Generatywna sztuczna inteligencja (AI) wywołała kolejną falę entuzjazmu wobec AI. Artykuł prezentuje AI z perspektywy data science (DS). DS zajmuje się programowaniem i implementacją AI. W naukach społecznych istnieje znaczne zainteresowanie AI, niemniej rzadko traktowano DS jako podmiot badań.
Cel badań: Celem pracy jest analiza odbioru i rozumienia AI z perspektywy społeczności DS. Wyniki mogą być przydatne w demistyfikacji AI wobec odbiorców nietechnicznych, zwłaszcza dla nauczycieli akademickich i studentów.
Metoda badań: W badaniu zastosowano analizę sytuacyjną wraz z etnografią wielostanowiskową. W latach 2016–2019 zastosowano metody wywiadu pogłębionego (IDI) ze specjalistami data scientist, obserwację uczestniczącą wydarzeń i warsztatów DS, etnografię opartą na współpracy, autoetnografię i netnografię. W połowie 2023 roku przeprowadzono nieformalne wywiady i formalne IDI.
Wyniki: Społeczność DS postrzega AI jako nietechniczny termin marketingowy stosowany dla różnych technologii, w tym uczenia maszynowego. Rzecznicy biznesowi używają terminu „AI”, aby wywrzeć wrażenie na nietechnicznej publiczności. Przywoływanie popkulturowych obrazów AI tworzy iluzję sztucznej inteligencji jako magicznej. W przeciwieństwie do tego przygotowanie modelu uczenia maszynowego jest widziane w DS jako pracochłonne i eksperymentalne. Specjaliści data scientist kojarzą uczenie maszynowe z Pythonem, językiem programowania, AI zaś ze slajdami PowerPoint, które ilustrują nierealistyczne lub niejasne obietnice składane przez rzeczników w komercyjnych celach.
Wnioski: Sceptyczne podejście DS do AI może być pomocne w wyjaśnianiu AI odbiorcom nietechnicznym, w tym studentom. Podano praktyczne sugestie dla nauczycieli akademickich.
Słowa kluczowe
Pełny tekst:
PDF (English)Bibliografia
Afeltowicz, Ł., & Pietrowicz, K. (2008). Koniec socjologii, jaka znamy, czyli o maszynach społecznych i inżynierii socjologicznej. Studia Socjologiczne, 3(190), 43–73.
Alekseichenko, V. (2019). The difference between AI vs ML. LinkedIn. https://www.linkedin.com/feed/update/urn:li:activity:6501030890754314240/
Anderson, L. (2006). Analytic Autoethnography. Journal of Contemporary Ethnography, 35(4), 373–395. https://doi.org/10.1177/0891241605280449
Angrosino, M. (2010). Badania etnograficzne i obserwacje. Wydawnictwo Naukowe PWN.
Apple. (2024). Apple Intelligence Preview. https://www.apple.com/apple-intelligence/
Kozyrkov, C. (2018). Are you using the term ‘AI’ incorrectly? Medium. https://kozyrkov.medium.com/are-you-using-the-term-ai-incorrectly-911ac23ab4f5
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623. https://doi.org/10.1145/3442188.3445922
Charmaz, K. (2006). Constructing grounded theory. Sage Publications.
Clarke, A. E. (1997). A Social Worlds Research Adventure: The Case of Reproductive Science. In A. L. Strauss & J. Corbin (Eds.), Grounded Theory in Practice (pp. 63–94). SAGE Publications.
Clarke, A. E. (2003). Situational Analyses: Grounded Theory Mapping After the Postmodern Turn. Symbolic Interaction, 26(4), 553–576.
Clarke, A. E. (2005). Situational Analysis. Grounded Theory After the Postmodern Turn. Sage.
Clarke, A. E. (2015). From Grounded Theory to Situational Analysis. What’s New? Why? How? In A. E. Clarke, C. Friese, & R. S. Washburn (Eds.), Situational Analysis in Practice. Mapping Research with Grounded Theory (pp. 84–118). Left Coast Press Inc.
Clarke, A. E., Friese, C., & Washburn, R. S. (2015). Introducing Situational Analysis. In A. E. Clarke, C. Friese, & R. S. Washburn (Eds.), Situational Analysis in Practice. Mapping Research with Grounded Theory (pp. 11–75). Left Coast Press Inc.
Coeckelbergh, M., & Gunkel, D. J. (2023). ChatGPT: deconstructing the debate and moving it forward. AI & Society, 0123456789. https://doi.org/10.1007/s00146-023-01710-4
Crawford, K. (2021). Atlas of AI: power, politics, and the planetary costs of artificial intelligence. Yale University Press.
Dalton, C. M., Taylor, L., & Thatcher, J. (2016). Critical Data Studies: A dialog on data and space. Big Data & Society, 3(1), 205395171664834. https://doi.org/10.1177/2053951716648346
Davenport, T. H., & Patil, D. J. (2012). Data scientist: The sexiest job of the 21st century. Harvard Business Review. https://doi.org/10.1109/MITP.2016.41
Dijck van, J. (2014). Datafication, dataism and dataveillance: Big data between scientific paradigm and ideology. Surveillance and Society, 12(2), 197–208. https://doi.org/10.24908/ss.v12i2.4776
Elish, M. C., & Boyd, D. (2018). Situating methods in the magic of Big Data and AI. Communication Monographs, 85(1), 57–80. https://doi.org/10.1080/03637751.2017.1375130
Elliott, A. (2019). The culture of AI: everyday life and the digital revolution. Routledge, Taylor & Francis Group.
Foreman, J. W. (2017). Mistrz analizy danych. Od danych do wiedzy. Helion.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org/
Griffin, A. (2024). OpenAI pulls controversial voice for ChatGPT over claims its imitated Scarlett Johansson. The Independent. https://www.independent.co.uk/tech/scarlett-johansson-openai-chatgpt-sky-b2548460.html
Grommé, F., Ruppert, E., & Cakici, B. (2018). Data Scientists: A new faction of the transnational field of statistics. In H. Knox & D. Nafus (Eds.), Ethnography for a data-saturated world (pp. 33–61). Manchester University Press. https://research.gold.ac.uk/20522/1/Grommé et al 2017 Data Science prepub dist copy.pdf
Gutierrez, S. (2014). Data Scientists at Work: Sexy Scientists Wrangling Data And Begetting New Industries. Appres.
Hicks, M. T., Humphries, J., & Slater, J. (2024). ChatGPT is bullshit. Ethics and Information Technology, 26(2), 38. https://doi.org/10.1007/s10676-024-09775-5
Hu, K. (2023). {ChatGPT} sets record for fastest-growing user base - analyst note. Reuters. https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
Iwasiński, Ł. (2020). Theoretical Bases of Critical Data Studies. Zagadnienia Informacji Naukowej - Studia Informacyjne, 58(1A(115A)), 96–109. https://doi.org/10.36702/zin.726
Junco, P. R. (2017). Data Scientist Personas: What Skills Do They Have and How Much Do They Make? Glassdoor Economic Research. https://www.glassdoor.com/research/data-scientist-personas/
Kacperczyk, A. (2016). Społeczne światy. Teoria - empiria - metody badań: na przykładzie społecznego świata wspinaczki. Wydawnictwo Uniwersytetu Łódzkiego.
Kling, R., & Gerson, E. M. (1978). Patterns Of Segmentation And Intersection In The Computing World. Symbolic Interaction, 1(2), 24–43. https://doi.org/10.1525/si.1978.1.2.24
Knapik, R. (2018). Sztuczny Bóg. Wizerunki technologicznej Osobliwości w (pop)kulturze. Instytut Kultury Popularnej.
Kozinets, R. V. (2003). The Field behind the Screen: Using Netnography for Marketing Research in Online Communities. Journal of Marketing Research, 39(1), 61–72. https://doi.org/10.1509/jmkr.39.1.61.18935
Kruszyńska, A. (2024). Wyłoniono Słowo Roku 2023. Kapituła podała wyniki. Polska Agencja Prasowa. https://www.pap.pl/aktualnosci/wyloniono-slowo-roku-2023-kapitula-podala-wyniki
Krzysztofek, K. (2015). Technologie cyfrowe w dyskursach o przyszłości pracy. Studia Socjologiczne, 4(219), 50–31.
Lanier, J. (2023). There Is No A.I. The New Yorker. https://www.newyorker.com/science/annals-of-artificial-intelligence/there-is-no-ai
Lassiter, L. E. (2005). The Chicago Guide to Collaborative Ethnography. The University of Chicago Press.
Lowrie, I. (2016). Caring for Computers: How Russian Data Scientists Refashion Their Laptops. Anthropology Now, 8(2), 25–33. https://doi.org/10.1080/19428200.2016.1202578
Lowrie, I. (2017). Algorithmic rationality: Epistemology and efficiency in the data sciences. Big Data & Society, 4(1), 1–13. https://doi.org/10.1177/2053951717700925
Lowrie, I. (2018). Becoming a real data scientist. Expertise, flexibility and lifelong learning. In H. Knox & D. Nafus (Eds.), Ethnography for a data-saturated world (pp. 62–81). Manchester University Press. https://doi.org/10.7765/9781526127600.00010
Luchs, I., Apprich, C., & Broersma, M. (2023). Learning machine learning: On the political economy of big tech’s online AI courses. Big Data and Society, 10(1). https://doi.org/10.1177/20539517231153806
Łukawski, T., Łukawski, A., & Rafał, M. (2023). Do czego AI nie służy. Przewodnik dla nauczycieli stworzony przez grupę roboczą ds. AI. Instytut Badań Edukacyjnych. https://krk.ibe.edu.pl/pl/aktualnosci/2196-do-czego-ai-nie-sluzy-przewodnik-dla-nauczycieli
Marcus, G. E. (1995). Ethnography in / of the World System : The Emergence of Multi-Sited Ethnography. Annual Review of Anthropology, 24, 95–117.
O’Neil, C., & Schutt, R. (2015). Badanie danych: raport z pierwszej linii działań. Helion.
Petty, G. (2013). Nowoczesne nauczanie. Praktyczne wskazówki i techniki dla nauczycieli, wykładowców i szkoleniowców. Gdańskie Wydawnictwo Psychologiczne.
Piatetsky, G. (2018). Data Scientist – best job in America, 3 years in a row. https://www.kdnuggets.com/2018/01/glassdoor-data-scientist-best-job-america-3years.html
Raschka, S. (2018). Python. Uczenie maszynowe. Helion.
Russel, S. J., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd ed.). Prentice Hall. http://web.cecs.pdx.edu/~mperkows/CLASS_479/2017_ZZ_00/02__GOOD_Russel=Norvig=Artificial Intelligence A Modern Approach (3rd Edition).pdf
Sætra, H. S. (2023). Generative AI: Here to stay, but for good? Technology in Society, 75(September), 102372. https://doi.org/10.1016/j.techsoc.2023.102372
Schulze, E. (2019). 40% of A.I. start-ups in Europe have almost nothing to do with A.I., research finds. 06.03.2019 CNBC. https://www.cnbc.com/2019/03/06/40-percent-of-ai-start-ups-in-europe-not-related-to-ai-mmc-report.html
Strauss, A. L. (1978). A Social World Perspective. In N. Denzin (Ed.), Studies in Symbolic Interaction (Vol. 1, pp. 119–128). JAI Press.
Szpunar, M. (2006). Technofobia versus technofilia - technologia i jej miejsce we współczesnym świecie. In Problemy społeczne w grze politycznej (pp. 370–384).
Szpunar, M. (2012). Nowe-Stare Medium. Wydawnictwo IFiS PAN.
Thomas, S. L., Nafus, D., & Sherman, J. (2018). Algorithms as fetish: Faith and possibility in algorithmic work. Big Data & Society, 5(1), 1–11. https://doi.org/10.1177/2053951717751552
Unruh, D. R. (1980). The Nature of Social Worlds. The Pacific Sociological Review, 23(3), 271–296. https://doi.org/10.2307/1388823
Vail, D. A. (1999). The Commodification of Time in Two Art Worlds. Symbolic Interaction, 22(4), 325–344. https://doi.org/10.1525/si.1999.22.4.325
Van Noorden, R., & Perkel, J. M. (2023). AI and science: what 1,600 researchers think. Nature, 621(7980), 672–675. https://doi.org/10.1038/d41586-023-02980-0
Weber, M. (1989). Polityka jako zawód i powołanie. Wydawnictwo Znak.
Zaród, M. (2018). Aktorzy-sieci w kolektywach hakerskich w Polsce [Praca doktoska, Uniwersytet Warszawski]. https://depotuw.ceon.pl/handle/item/2909
Zuboff, S. (2019). The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power. PublicAffairs.
Żulicki, R. (2022). Data science: najseksowniejszy zawód XXI wieku w Polsce. Big data, sztuczna inteligencja i PowerPoint. Wyd. UŁ.
Żulicki, R. (2024). Are they doing artificial intelligence? (Re)constructing the primary activity in data science. Przegląd Socjologii Jakościowej, 20(4), 190–213. https://doi.org/10.18778/1733-8069.20.4.09
DOI: http://dx.doi.org/10.17951/lrp.2025.44.2.59-75
Data publikacji: 2025-06-26 23:46:47
Data złożenia artykułu: 2024-06-15 10:28:24
Statystyki
Wskaźniki
Prawa autorskie (c) 2025 Remigiusz Żulicki

Powyższa praca jest udostępniana na lcencji Creative Commons Attribution 4.0 International License.