Algorithms in the Educational Process – Opportunities and Limitations

Małgorzata Chojak

Abstract


Introduction: Algorithm application is now a common topic in scientific and popular science publications. More and more practitioners and theoreticians associated with teaching, upbringing, and therapy are turning to it, hoping to make their activities more effective and improve their organization.
Research Aim: This article presents the possibilities and limitations of introducing algorithms to the educational process.
Evidence-based Facts: Over the past years, the number of publications dedicated to AI and the process of algorithmization, has increased significantly. Defining the concept of an algorithm, and pointing out its connection with machine learning and artificial intelligence have paved the way for applying algorithms in many areas of our lives from applications used on personal devices, to medicine, banking, educational policy, and scientific research. The increasing popularization of algorithmization and easier access to this technology have sparked a discussion about its limitations and dangers affecting adults and children, either directly or
indirectly.
Summary: Practitioners and researchers involved in educational processes still lack knowledge of the topic under discussion. Few scientific or popular science publications prepared by real specialists are aimed at this audience. Without a thorough understanding of algorithmization, machine learning, and artificial intelligence, the introduction of algorithms to the educational processes may not only fail to achieve the intended results but also lead to disorders in the development of children, adolescents, and adults.

Keywords


algorithm, algorithmization, educational processes, teaching, upbringing, therapy

Full Text:

PDF

References


Alston, P., Khawaja, B., Riddell, R. (2019). Much Ado About Poverty: The Role of a UN Special Rapporteur. NYU School of Law, Public Law Research Paper No. 19-31.

Babicka-Wirkus, W., Parezja, A. (2018) Polityka w edukacji i edukacja w polityce. Forum Młodych Pedagogów przy Komitecie Nauk Pedagogicznych PAN, 1(9), 11–23.

Basso, D., Fronza, I., Colombi, A., Pahl, C. (2018). Improving assessment of computational thinking through a comprehensive framework. In Proceedings of the 18th Koli Calling International Conference on Computing Education Research (pp. 1–5). Association for Computing Machinery.

Bedyńska, S., Campfield, D., Kaczan, R., Kaczmarek, M., Knopik, T., Kochańska, M., Krasowicz-Kupis, G., Krejtz, I., Orylska, A., Papuda-Dolińska, B., Rycielski, P., Rydzewska, K., Sędek, G., Smoczyńska, M., Wiejak, K. (2021). Narzędzia diagnostyczne do oceny zdolności poznawczych dzieci i młodzieży – projekt wdrożeniowy. Przegląd Psychologiczny, 64(2), 9–23.

Bovens M., Zouridis S. (2002) From street-level to system-level bureaucracies: How information and communication technology is transforming administrative discretion and constitutional control. Public Administration Review, 62(2), 174–184.

Bucher, T. (2018). If... Then: Algorithmic Power and Politics. Oxford University Press.

Castillo, N.M., Adam, T., Alam, A., Alrawashdeh, G., Tiwari, P. (2022). Trends in Digital Personalized Learning: Landscape Review of Personalized Learning Solutions in Low and Middle-Income Countries. UNICEF.

Chen, X., Zou, D., Xie, H., Cheng, G., Liu, C. (2022). Two decades of artificial intelligence in education. Educational Technology & Society, 25(1), 28–47.

Chojak, M. (2019). Neuropedagogika, neuroedukacja i neurodydaktyka – fakty i mity. Difin.

Chojak, M. (2021). Nauczycielska diagnoza pedagogiczna w przedszkolu i w szkole. Difin.

Ersozlu, Z., Taheri, S., Koch, I. (2024). A review of machine learning methods used for educational data. Education and Information Technologies, 29(16), 22125–22145.

European Agency for Special Needs and Inclusive Education. (2018). Dowody na związek edukacji włączającej z włączeniem społecznym. Końcowy raport podsumowujący.

Garcia, M., Pedersen, J.M., Riele, H. te. (2004). Amicable pairs, a survey. Fields Institute Communications, 41, 179–196.

Gralak, J. What is machine learning. Retrieved 5, November, 2024 from: https://ttpsc.com/pl/blog/machine-learning-thingworx-vs-covid-19/

Grover, S. (2017). Assessing algorithmic and computational thinking in K-12: Lessons from a middle school classroom. In P.J. Rich, C.B. Hodges (Eds.), Emerging Research, Practice, and Policy on Computational Thinking (pp. 269–288). Springer.

Grover, S., Pea, R. (2018). Computational thinking: A competency whose time has come. In S. Sentance, E. Barendsen, C. Schulte (Eds.), Computer Science Education: Perspectives on Teaching and Learning in School (pp. 19–38). Bloomsbury.

Guo, S., Si, L., Liu, X. (2023). Research practice and progress of models and algorithms applied in topic identification and prediction based on the analysis of CNKI. Applied Sciences, 13(13),7545.

Guzicki, W., Zakrzewski, P. (2005). Wykłady ze wstępu do matematyki: wprowadzenie do teorii mnogości. PWN.

Horabin, I.S., Lewis, B.N. (1978). Algorithms. Educational Technology. Iwasiński, Ł. (2016). Społeczne zagrożenia danetyzacji rzeczywistości. In B. Sosińska-Kalata (Ed.), Nauka o informacji w okresie zmian. Informatologia i humanistyka cyfrowa (pp. 135–146). SBP.

Joel, S., Eastwick, P.W., Finkel, E.J. (2017). Czy romantyczne pożądanie jest przewidywalne? Uczenie maszynowe stosowane do początkowego romantycznego pociągu. Psychological Science, 28(10), 1478–1489.

Kaufmann, E., Chacon, A., Kausel, E.E, Herrera, N., Reyes, T. (2023). Task-specific algorithm advice acceptance: A review and directions for future research. Data and Information Management, 7(3),100040.

Khalid, O., Isa, N.A.M., Sakim, H.A.M. (2022). Emperor penguin optimizer: A comprehensive review based on state-of-the-art meta-heuristic algorithms. Alexandria Engineering Journal, 63(24), 487–526.

Kotnarowski, M., Sztandar-Sztanderska, K., Zielenska, M. (2021). Czy algorytmy wprowadzają w błąd? Metaanaliza algorytmu profilowania bezrobotnych stosowanego w Polsce. Studia Socjologiczne, 1(240), 89–114.

Kreft, J. (2019). Władza algorytmów: u źródeł potęgi Google i Facebooka. Wyd. UJ.

Landa, L.N. (1977). Algorithmization in Learning and Instruction. Educational Technology Margolis, C. (1983). Uses of clinical algorithms. JAMA – Journal of the American Medical, 249(5), 627.

Mohammed, M., Khan, M.B., Mohammed, B.E. (2016 ). Machine Learning: Algorithms and Applications. CRC Press.

Niemierko, B. (2009). Diagnostyka edukacyjna. PWN.

Nijenhuis-Voogt, J., Bayram-Jacobs, D., Meijer, P.C., Barendsen, E. (2021). Teaching algorithms in upper secondary education: a study of teachers pedagogical content knowledge. Computer Science Education, 33(1), 61–93.

Papuda-Dolińska, B., Błaszczak, A., Wiejak, K., Knopik, T., Krasowicz-Kupis, G., Łuniewska-Etenkowska, M., Zieliński, P. (2023). Skale obserwacyjne do oceny rozwoju poznawczego dla osób z niepełnosprawnością intelektualną w stopniu umiarkowanym (KAPP_SNIU), znacznym (KAPP_SNIZ) i głębokim (KAPP_SNIG) – charakterystyka narzędzia. Lubelski Rocznik Pedagogiczny, 42(2), 117–133.

Pazdanowski, M. (2012). Aproksymacja. Master’s thesis. Politechnika Krakowska.

Radomski, G., Klichowska, K. (2004). Wychowanie a polityka. Cele polityczne jako czynnik determinujący oddziaływanie wychowawcze. UMK.

Sarker, I.H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2, 160.

Scheider, G.M., Gersting. J. (1995). An Invitation on Computer Science. West Publishing Company.

Schlund, R., Zitek, E.M. (2024). Algorithmic versus human surveillance leads to lower perceptions of autonomy and increased resistance. Communications Psychology, 2, 53.

Szpunar, M. (2019). Kultura algorytmów. Instytut Dziennikarstwa, Mediów i Komunikacji Społecznej Uniwersytetu Jagiellońskiego.

Tzanetos, A., Dounias, G. (2021). Nature inspired optimization algorithms or simply variations of metaheuristics? Artificial Intelligence Review, 54(3), 1841–1862.

Wedel, J.R. (2014). Unaccountable: How Elite Power Brokers Corrupt Our Finances, Freedom, and Security. Pegasus Books.

Witten, I.H., Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann.

Wroński, A. (2020). Algorytmy, programowanie i myślenie komputacyjne. Retrieved 5, December, 2024 from: https://www.pcen.pl/images/bank-dobrych-praktyk/tik/002-Algorytmy-programowanie-myslenie-komputacyjne.pdf

Wróblewski, P. (2019). Algorytmy, struktury danych i techniki programowania. Helion.

Wysocka, E. (2013). Diagnostyka pedagogiczna. Nowe obszary i rozwiązania. Impuls.

Zawojski, P. (2018). Rewolucja algorytmiczna. We władzy cyfr i liczb. Opcje, 4, 14–21.

Zarzecki, L. (2012). Teoretyczne podstawy wychowania. Teoria i praktyka w zarysie. Karkonoska Państwowa Szkoła Wyższa.

Zouridis, S., Van Eck, M., Bovens, M.A.P. (2020). Automated discretion. In T. Evans, P. Hupe (Eds.), Discretion and the Quest for Controlled Freedom (pp. 313 – 329). Palgrave Macmillan.




DOI: http://dx.doi.org/10.17951/lrp.2024.43.4.75-89
Date of publication: 2025-01-22 11:01:07
Date of submission: 2024-06-20 10:08:18


Statistics


Total abstract view - 0
Downloads (from 2020-06-17) - PDF - 0

Indicators





Copyright (c) 2025 Małgorzata Chojak

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.