Additive inequalities for weighted harmonic and arithmetic operator means
Abstract
Keywords
Full Text:
PDFReferences
Dragomir, S. S., Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 417–478.
Dragomir, S. S., A note on Young’s inequality, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. RACSAM 111 (2) (2017), 349–354.
Dragomir, S. S., Some new reverses of Young’s operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 130. http://rgmia.org/papers/v18/v18a130.pdf
Dragomir, S. S., On new refinements and reverses of Young’s operator inequality, Transylv. J. Math. Mech. 8 (1) (2016), 45–49.
Dragomir, S. S., Some inequalities for operator weighted geometric mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 139. http://rgmia.org/papers/v18/v18a139.pdf
Dragomir, S. S., Some reverses and a refinement of H¨older operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 147. http://rgmia.org/papers/v18/v18a147.pdf
Dragomir, S. S., Some inequalities for weighted harmonic and arithmetic operator means, Fasc. Math. No. 61 (2018), 43–54.
Furuichi, S., Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.
Furuichi, S., On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21–31.
Liao, W., Wu, J., Zhao, J., New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2) (2015), 467–479.
Tominaga, M., Specht’s ratio in the Young inequality, Sci. Math. Japon. 55 (2002), 583–588.
Zuo, G., Shi, G., Fujii, M., Refined Young inequality with Kantorovich constant, J. Math. Inequal. 5 (2011), 551–556.
DOI: http://dx.doi.org/10.17951/a.2019.73.1.1-17
Date of publication: 2019-12-19 10:33:44
Date of submission: 2019-12-17 09:28:02
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Sever Dragomir