On the number of empty cells in the allocation scheme of indistinguishable particles

Alexey Chuprunov, Istvan Fazekas

Abstract


The allocation scheme of \(n\) indistinguishable particles into \(N\) different cells is studied. Let the random variable \(\mu_0(n,K,N)\) be the number of empty cells among the first \(K\) cells. Let \(p=\frac{n}{n+N}\). It is proved that \(\frac{\mu_0(n,K,N)-K(1-p)}{\sqrt{ K p(1-p)}}\) converges in distribution to the Gaussian distribution with expectation zero and variance one, when \(n,K, N\to\infty\) such that \(\frac{n}{N}\to\infty\) and \(\frac{n}{NK}\to 0\). If \(n,K, N\to\infty\) so that \(\frac{n}{N}\to\infty\) and \(\frac{NK}{n}\to \lambda\), where \(0<\lambda<\infty\), then \(\mu_0(n,K,N)\) converges in distribution to the Poisson distribution with parameter \(\lambda\). Two applications of the results are given to mathematical statistics. First, a method  is offered to test the value of \(n\). Then, an analogue of the run-test is suggested with an application in signal processing.

Keywords


Allocation scheme of indistinguishable particles into different cells; Gaussian random variable; Berry-Esseen inequality; limit theorem; local limit theorem

Full Text:

PDF

References


Barbour, A. D., Holst, L., Janson, S., Poisson Approximation, Oxford University Press, Oxford, 1992.

Chuprunov, A. N., Fazekas, I., Poisson limit theorems for the generalized allocation scheme, Ann. Univ. Sci. Budapest, Sect. Comp. 49 (2019), 77–96.

Gibbons, J. D., Nonparametric Statistical Inference, McGraw-Hill, New York, 1971.

Gordon, L., Schilling, M. F., Waterman, M. S., An extreme value theory for long head runs, Probab. Theory Related Fields 72 (1986), 279–287.

Khakimullin, E. R., Enatskaya, N. Yu., Limit theorems for the number of empty cells, Diskret. Mat. 9 (2) (1997), 120–130 (Russian); translation in Discrete Math. Appl. 7 (2) (1997), 209–219.

Kolchin, V. F., A class of limit theorems for conditional distributions, Litovsk. Mat. Sb. 8 (1968), 53–63 (Russian).

Kolchin, V. F., Random Graphs, Cambridge University Press, Cambridge, 1999.

Kolchin, V. F., Sevast’yanov, B. A., Chistyakov, V. P., Random Allocations, V. H. Winston & Sons, Washington D. C., 1978.

Renyi, A., Probability Theory, Elsevier, New York, 1970.

Timashev, A. N., Asymptotic Expansions in Probabilistic Combinatorics, TVP Science Publishers, Moscow, 2011 (Russian).

Trunov, A. N., Limit theorems in the problem of distributing identical particles in different cells, Proc. Steklov Inst. Math. 177 (1988), 157–175.




DOI: http://dx.doi.org/10.17951/a.2020.74.1.15-29
Date of publication: 2020-10-20 20:08:00
Date of submission: 2020-10-10 21:38:34


Statistics


Total abstract view - 997
Downloads (from 2020-06-17) - PDF - 676

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Alexey Chuprunov, Istvan Fazekas