On implicative BE algebras

Andrzej Walendziak

Abstract


We consider some generalizations of BCK algebras (RML, BE, aBE, BE** and aBE** algebras). We investigate the property of implicativity for these algebras. We prove that for any implicative BE** algebra the commutativity property is equivalent to the property of antisymmetry and show that implicative aBE** algebras are commutative BCK algebras. We also show that the class of implicative BE** algebras is a variety.

Keywords


BE algebra; BE** algebra; BCK algebra; commutativity; implicativity

Full Text:

PDF

References


Abbott, J. C., Semi-boolean algebras, Mat. Vesnik 4 (1967), 177–198.

Ciloglu, Z., Ceven, Y., Commutative and bounded BE-algebras, Algebra 2013, Article ID 473714, 5 pp. https://doi.org/10.1155/ 2013/473714.

Imai, Y., Iseki, K., On axiom system of propositional calculi. XIV, Proc. Japan Acad. 42 (1966), 19–22. https://doi.org/10.3792/pja/1195522169.

Iorgulescu, A., Algebras of logic as BCK algebras, Academy of Economic Studies Press, Bucharest, 2008.

Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras – Part I, J. Mult.-Valued Logic Soft Comput. 27 (2016), 353–406.

Iorgulescu, A., New generalizations of BCI, BCK and Hilbert algebras – Part II, J. Mult.-Valued Logic Soft Comput. 27 (2016), 407–456.

Iseki, K., On BCI-algebras, Math. Semin. Notes 8 (1980), 125–130.

Iseki, K., Tanaka, S., An introduction to the theory of BCK-algebras, Math. Japon. 23 (1) (1978/79), 1–26.

Jun, Y. B., Kang, M. S., Fuzzifications of generalized Tarski filters in Tarski algebras, Comp. Math. Appl. 61 (2011), 1–7.

Kim, H. S., Kim, Y. H., On BE-algebras, Sci. Math. Jpn. 66 (2007), 113–128.

Meng, J., Jun, Y. B., BCK algebras, Kyung Moon Sa Company, Seoul, 1994.

Meredith, C. A., Formal Logics, Oxford, 2nd ed., 1962.

Tanaka, S., A new class of algebras, Math. Semin. Notes 3 (1975), 37–43.

Walendziak, A., On commutative BE-algebras, Sci. Math. Jpn. 69 (2009), 281–284.

Walendziak, A., The implicative property for some generalizations of BCK algebras, J. Mult.-Valued Logic Soft Comput. 31 (2018), 591–611.

Walendziak, A., The property of commutativity for some generalizations of BCK algebras, Soft Comput. 23 (2019), 7505–7511.

Yutani, H., On a system of axioms of commutative BCK-algebras, Math. Semin. Notes 5 (1977), 255–256.




DOI: http://dx.doi.org/10.17951/a.2022.76.2.45-54
Date of publication: 2023-03-13 22:27:58
Date of submission: 2023-03-12 19:20:51


Statistics


Total abstract view - 473
Downloads (from 2020-06-17) - PDF - 418

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Andrzej Walendziak