Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator

M. K. Aouf, A. Shamandy, A. O. Mostafa, S. M. Madian

Abstract


Let A denote the class of analytic functions with the normalization f(0)=f(0)1=0 in the open unit disc U={z:|z|<1}.  Set fnλ(z)=z+k=2[1+λ(k1)]nzk(nN0; λ0; zU),
and define fnλ,μ in terms of the Hadamard product fnλ(z)fnλ,μ=z(1z)μ(μ>0; zU).
In this paper, we introduce several subclasses of analytic functions defined by means of the operator Inλ,μ:AA, given by Inλ,μf(z)=fnλ,μ(z)f(z)(fA; nN0; λ0; μ>0).
Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.

Keywords


Analytic; Hadamard product; starlike; convex

Full Text:

PDF

References


Al-Oboudi, F. M., On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.

Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446.

Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.

Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot–Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983.

Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-98.

Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.

Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97.

Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.

Owa, S., Srivastava, H. M., Some applications of the generalized Libera operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128.

Salagean, G. S., Subclasses of univalent functions, Complex analysis - fifth

Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.

Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, 1992.




DOI: http://dx.doi.org/10.2478/v10062-010-0002-1
Date of publication: 2016-07-29 22:06:15
Date of submission: 2016-07-29 17:48:23


Statistics


Total abstract view - 941
Downloads (from 2020-06-17) - PDF - 625

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 M. K. Aouf, A. Shamandy, A. O. Mostafa, S. M. Madian